PrivBayes: Private Data Release via Bayesian Networks

Graham Cormode² **Divesh Srivastava³** Jun Zhang¹ Xiaokui Xiao¹ **Cecilia Procopiuc³** 1.Nanyang Technological University 2. University of Warwick 3. AT&T Labs -- Research {jzhang027, xkxiao}@ntu.edu.sg g.cormode@warwick.ac.uk {magda, divesh}@research.att.com

1. Private Data Release

where D and D' are neighboring databases that differ by **at most one** tuple $\exp(-\varepsilon) \le \frac{\Pr[A(D) = 0]}{\Pr[A(D') = 0]} \le \exp(\varepsilon)$

3. Function F: Linear vs. Logarithmic

Drawback of Function *I*

range (info)	0(1)	sensitivity (noise)	$O(\log n / n)$
Problem: low info-noise ratio			
Solution: design a new function F that (i) has a higher info-noise			
ratio; (ii) has a strong positive correlation with I			
Idea: define F to	b agree with I a	t maximum values	and interpolate
linearly in-betwo	een		

□ Interactive mode

user

database DP algorithm Non-interactive mode (synthetic data release)

private data release synthetic data privacy budget ε

Reusability: only access sensitive data once **Generality:** support most queries However, the tuple distribution has a huge domain (exponential to dimension), which leads to high computational cost and low signal-to-noise ratio.

2. Private Bayesian Network

• Approximate full distribution by low dimensional ones

Build a Bayesian network

The quality of a Bayesian network is measured by sum of mutual information I of its edges. I is defined as

$$I(X,Y) = \sum_{y \in Y} \sum_{x \in X} \Pr[x,y] \log\left(\frac{\Pr[x,y]}{\Pr[x]\Pr[y]}\right).$$

4. Experiments

We apply PrivBayes to generate one synthetic dataset, to answer a set of counting and SVM training queries simultaneously.

0.05

0.8

1.6

0.2

0.4

privacy budget ε

quality of private Bayesian network

using F or I

THE UNIVERSITY OF WICK