
An Iterative Algorithm for Graph De-anonymization

Jun Zhang† Youze Tang† Xiaokui Xiao† Yin Yang‡ Zhenjie Zhang‡ Marianne Winslett‡§
†Nanyang Technological University ‡Advanced Digital Sciences Center, Singapore §University of Illinois, USA

†{jzhang027, s110013, xkxiao}@ntu.edu.sg
‡{yin.yang, zhenjie}@adsc.com.sg §winslett@illinois.edu

ABSTRACT
The availability of social network data is indispensable for
numerous types of research. Nevertheless, data owners are
often reluctant to release social network data, as the re-
lease may reveal the private information of the individuals
involved in the data. To address this problem, several tech-
niques have been proposed to anonymize social networks
for privacy preserving publications. To evaluate the pri-
vacy protection of existing techniques, this paper presents
an algorithm designed for de-anonymizing the anonymized
graphs produced by the existing techniques. With ex-
periments on a large set of anonymized graphs generated
by the existing techniques, we demonstrate that our algo-
rithm can re-identify a large portion of individuals in many
anonymized graphs, which sheds light on their effectiveness
and relative superiority.

1. INTRODUCTION
A social network is a graph where each node represents an
individual, and each edge between two nodes indicates that
a certain relationship exists between the two individuals cor-
responding to the two nodes. Social networks are an impor-
tant type of data that provide invaluable information on how
individuals interact with each other, and they have become
indispensable for research in numerous areas. However, data
owners are often reluctant to release social network data, as
the release may disclose the private information of the indi-
viduals involved in the data. A straightforward solution for
this problem is to first remove the explicit identifier (e.g.,
name) associated with each node in a social network, and
then release the resulting social network. This solution, how-
ever, does not provide a high degree of privacy protection,
as it cannot guard against adversaries with prior knowledge
about the structure of the original social network [2]. For
example, assume that an adversary knows in advance that
Alice appears in a social network G, and the node in G cor-
responding to Alice is adjacent to 100 edges. Further assume
that G contains only one node with 100 edges. Then, even
if we remove the identifier of each node in G, the adversary

can still easily re-identify the node corresponding to Alice
by inspecting the degree of each node.

To address the above problem, several techniques [3–6,8–11]
have been proposed to more effectively anonymize a social
network G, by modifying the structure of G. Among the
existing techniques, the most notable ones are by Liu and
Terzi [8], Bonchi et al. [3], and Tassa and Cohen [9]. In par-
ticular, Liu and Terzi [8] as well as Bonchi et al. [3] devise
algorithms that heuristically delete edges from G and then
insert artificial edges into G. On the other hand, Tassa and
Cohen [9] propose to divide the nodes in G into several par-
titions, and then release only aggregate information about
the partitions, i.e., the number of nodes and edges in each
partition, as well as the number of edges between any two
partitions. Each of these three techniques has been experi-
mentally evaluated, and has been shown to provide privacy
protection to some extend. However, there has not been
any system comparison of the privacy guarantees provided
by those techniques.

In this paper, we propose an algorithm for de-anonymizing
the graphs generated by the aforementioned three tech-
niques, and we employ it to evaluate and compare each
technique’s privacy guarantee. In particular, our algorithm
takes as input (i) a social network G where each node and
each edge does not contain any attribute, as well as (ii) an
anonymized version G∗ of G. For any node v ∈ G and any
node v∗ ∈ G∗, the algorithm outputs the likelihood that v
corresponds to v∗. In other words, our algorithm mimics
a powerful adversary who knows whether or not there ex-
ists an edge between any two nodes in G, and it employs
such background knowledge to re-identify each node of the
anonymized graph G∗. With extensive experiments on real
data, we demonstrate the effectiveness of our algorithm by
showing that it can re-identify up to 43% of individuals
in the anonymized graphs produced by the existing tech-
niques [3, 8, 9]; in addition, our experimental results shed
lights on their effectiveness and relative superiority.

2. PROBLEM STATEMENT
A social network G is an undirected graph with a set of ver-
tices V and a set of edges E. Each vertex v ∈ V corresponds
to an individual, while each edge e ∈ E between two nodes
v1, v2 ∈ V indicates the existence of certain relationship be-
tween v1 and v2 (e.g., v1 and v2 are knows each other). An
anonymized version of G is graph G∗ that contains the same
set of nodes as in G; the set of edges in G∗, denoted as E∗,

can be different from the one in G. Our objective is to infer,
for any node v ∈ G and any node v∗ ∈ G, whether or not v
corresponds to v∗. We consider that G∗ is generated from
any of the techniques proposed in previous work by Liu and
Terzi [8], Bonchi et al. [3], and Tassa and Cohen [9], as will
be reviewed in Section 3.

3. RELATED WORK
This section reviews the graph anonymization techniques by
Liu and Terzi [8], Bonchi et al. [3], and Tassa and Cohen [9],
which are the targets of our de-anonymization algorithm.

Liu and Terzi’s approach [8]. Liu and Terzi propose to
anonymize G by removing some edges in G and then adding
some artificial edges back into G. The objective of their
approach is to ensure that the anonymized graph G∗ is k-
degree anonymouse, i.e., any node in G∗ has the same degree
with at least k− 1 other nodes in G∗. This guarantees that,
even if the adversary knows in advance the degree of a node
corresponding to an individual, the adversary still cannot
accurately re-identify the individual from G∗.

Bonchi et al.’s approach [3]. Bonchi et al.’s propose two
methods that also anonymize G by deleting and inserting
edges in G. The first method works by randomly remove
each edge in G with a probability p. The second method
first randomly eliminate each edge in G with probability p,
and then, for each two nodes v1, v2 that are not connected
by an edge in G, insert an edge between v1 and v2 with
a probability p′. The values of p and p′ are decided in a
manner such that the expected number of edges removed
from G would be equal to the expected number of edges
inserted.

Tassa and Cohen’s approach [9]. Tassa and Cohen’s
algorithm first divides the nodes in G into several groups,
such that each group contains at least k nodes. After that,
the algorithm releases the information of node groups in an
aggregate manner. In particular, for each node group C,
it returns the number of nodes in C, as well as the number
edges between the nodes in C. In addition, for any two node
groups C1 and C2, it returns the number of edges whose two
endpoints are in C1 and C2, respectively.

4. SOLUTION
Overview. Our algorithm (for inferring the correspon-
dences between nodes in G and nodes in G∗) runs in an
iterative manner. In particular, it maintains a n× n matrix
M (referred to as the correspondence matrix, where n is the
number of nodes in G, such that the entry eij at the i-th
row and j-th column of M quantifies the likelihood that the
i-th node vi in G corresponds to the j-th node v∗j in G∗. Ini-
tially, all entries in M are set to 1

n
, i.e., the mappings from

a node in G to all nodes in G∗ are deemed equally likely.
After that, the algorithm iteratively refines M to adjust the
value of each entry, and it terminates after the changes in
entry values after an iteration is negligible. Specifically, the
refinement performed by each iteration of the algorithm is
based on heuristic method for evaluating the similarity be-
tween a node vi ∈ G and a node vj ∈ G∗, as explained in
the following.

� �1
∗ �2

∗ �3
∗
 �4

∗

�1 0.1 0.9 0 0

�2 0.1 0.1 0.4 0.4

�3 0.3 0.5 0.2 0

 �� and 	(��) in � �

∗ and 	(�

∗) in �∗

(a) (b) (c)

���((��), 	(�

∗))

��
�

∗

�1

�2 �3

�1
∗ �2

∗

�3
∗ �4

∗

Figure 1: An example of sim function

Evaluation of Node Similarity. Consider the correspon-
dence matrixM given to a certain iteration of our algorithm.
To refine M , we evaluate the similarity between any node
vi in G and any node v∗j in G∗, by inspecting the entry eij
in M , as well as (i) the set N(vi) of nodes in G that are
the neighbors of vi and (ii) the set N(v∗j) of nodes in G∗

that are the neighbors of v∗j in G∗. In particular, we try to
match the nodes in N(vi) to those in N(v∗j). If there exists
a matching that looks likely, then we increase the value of
eij ; otherwise, the value of eij is decreased. More formally,
we update the value of eij based on the following equation:

eij =
eij + sim(N(vi), N(v∗j))

1 + max(|N(vi)| ,
∣∣N(v∗j)

∣∣) , (1)

where (i) sim(N(vi), N(v∗j)) denotes the similarity between
N(vi) and N(v∗j) (as will be explained shortly), (ii) the value
1 in the denominator of the R.H.S. equals the maximum pos-
sible value of eij , and (iii) the term max(|N(vi)| ,

∣∣N(v∗j)
∣∣)

in the denominator of the R.H.S. equals the maximum pos-
sible value of sim(N(vi), N(v∗j)). After all entries in M are
updated, we normalize the entries in each row of M , such
that all entries in a row sums up to 1.

Computation of sim(N(vi), N(v∗j)). To compute
sim(N(vi), N(v∗j)), we first construct a complete bipartite
graph B consisting of the nodes in N(vi) and N(v∗j), such
that there is no edge between any two nodes in N(vi) (resp.
any two nodes in N(v∗j)). In addition, for any edge in B
connecting the α-th node vα in G to the β-th node v∗β in
G∗, we set the weight of the edge to the value of the entry
eαβ in M . In other words, the edge captures the likelihood
of the correspondence between vα and v∗β , based on the cur-
rent correspondence matrix M . After that, we compute a
maximum matching in B using the classic Hungarian algo-
rithm [7], and we set sim(N(vi), N(v∗j)) to the total weight
of the edges in the maximum matching. Intuitively, the
larger sim(N(vi), N(v∗j)) is, the more likely that the nodes
in N(vi) can be matched to the nodes in N(v∗j).

For example, suppose that vi and N(vi) are as illustrated in
Figure 1a, while v∗j andN(v∗j) are as illustrated in Figure 1b.
Figure 1c shows the entries in M pertinent to the nodes in
N(vi) and N(v∗j). The entries highlighted in Figure 1c con-
stitute the maximum matching between N(vi) and N(v∗j).
Since the total weight of the highlighted entries equal 1.6,
we have sim(N(vi), N(v∗j)) = 1.6.

Dealing with Tassa and Cohen’s method [9]. The al-
gorithm describes above requires that, for each two nodes

 43

 44

 45

 46

 10 20 30 40

k

accuracy(%)

Figure 2: Accuracy of de-anonymization against Liu
and Terzi’s approach.

in the anonymized graph G∗, it is clearly defined whether
there exists an edge between the two nodes. However, the
anonymized graphs generated by Tassa and Cohen’s method
does not satisfy this requirement. In particular, it only re-
leases (i) the number of edges in each node group and (ii)
the number of edges between any two node groups, with-
out specifying the two endpoints of each edge. To address
this problem, we modify our algorithm as follows. Given
the original graph G, we first divide the nodes into several
groups using Tassa and Cohen’s method. (Note that Tassa
and Cohen’s method is randomized, and hence, the node
groups that we obtain are most likely different from those
in G∗.)

After that, we estimate the similarity s between a node
group C in G and to a node group C∗ in G∗, using a slightly
modified version of our iterative algorithm that regards each
node group as a node. Once s is computed, we define s as
the similarity between any node v in C and anonymized
node group C∗. Then, we re-generate the node groups of
G by re-running Tassa and Cohen’s method on G, and we
re-compute the similarity between v and C∗. The process
is repeated multiple times, and the final similarity between
v and C∗ are computed as the average of all similarities
between v and C∗ estimated. Finally, we construct the cor-
respondence matrix M based on the similarity between all
pairs of v and C∗.

5. EXPERIMENT
We conduct experiments using a social network G provided
by WSDM 2012 Data Challenge [1]. It contains 8, 248 nodes
and 18, 732 edges, such that each node represents an au-
thor, and each edge between two scholars indicates that they
have coauthored at least one paper published in a top data
mining conference in the last five years. We implement all
anonymization algorithms reviewed in Section 3, and employ
them to generate a set of anonymized versions of G.

We employ our algorithm to de-anonymize each anonymized
graph G∗, and we evaluate the accuracy of the de-
anonymization. In particular, for the i-th node vi in G,
we inspect the i-th row in the correspondence matrix M
produced by our algorithm, i.e., the row that indicate the
similarity between vi and each node in G∗. Suppose that
eij is the largest entry in i-th row in M , then, the j-th node
in G∗ is deemed the one that most likely corresponds to vi.
Accordingly, we map vi to v∗j . This mapping process is re-

 0

 10

 20

 30

 40

 50

 0.01 0.02 0.04 0.08 0.16 0.32

p

accuracy(%)

Figure 3: Accuracy against Bonchi et al.’s that only
removes edges from G.

 0

 10

 20

 30

 40

 50

 0.01 0.02 0.04 0.08 0.16 0.32

p

accuracy(%)

Figure 4: Accuracy against Bonchi et al.’s approach
with perturbation.

peated for each node in G. (Note that two nodes in G might
be mapped to the same node in G∗. After all mappings
are produced, we count the number of correct mappings,
and divide the count with the total number of nodes in G.
We define the resulting fraction as the accuracy of the de-
anonymization.

In the first experiment, we attack anonymized graphs gen-
erated by Liu and Terzi’s approach [8] with parameter
k = 10, 20, 30, 40, respectively. Figure 2 shows the accu-
racy of our de-anonymization as a function of k. Regardless
of the value k, The accuracy of de-anonymization is above
43%, i.e., our algorithm correctly re-identifies over 3, 500
authors (out of 8, 248) from each anonymized graph. The
mapping accuracy slightly decreases with the increase of k,
as a larger k indicates a higher level of degree of privacy pro-
tection, leading to a higher difficulty for de-anonymization.

Our second experiment evaluates the performance of our
algorithm in attacking one of the methods proposed by
Bonchi et al. [3], i.e., the method that anonymizes G by
removing edges from G. Figure 3 shows the accuracy of de-
anonymization as a function of p, i.e., the probability that
any edge in G is removed. When p is no more than 0.16, the
accuracy of our algorithm is over 30%. The accuracy drops
significantly when p = 0.32 since, under such a large value of
p, Bonchi et al.’s approach would remove around 32% of the
edges in G, which would significantly change the structure
of the anonymized graph, making it difficult to re-identify
nodes.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 10 20 30 40

k

accuracy(%)

Figure 5: Accuracy against Tassa and Cohen’s ap-
proach with perturbation

In the third experiment, we evaluate the performance of
our algorithm when attacking another method proposed by
Bonchi et al. [3], i.e., the method that anonymizes G by
first removing edges and then inserting back a roughly equal
amount of artificial edges. Figure 4 shows the accuracy of de-
anonymization as a function of p, i.e., the probability of edge
removal. As with the case in Figure 3, the de-anonymization
accuracy decreases when p increases. Furthermore, the ac-
curacy is lower than the case in Figure 3, since the artificial
edges inserted into the anonymized graph make it more dif-
ficult to de-anonymize.

Finally, Figure 5 shows the accuracy of our algorithm when
attacking Tassa and Cohen’s method [9], with the parameter
k varies from 10 to 40 (recall that k is the minimum size of
each node group generated by Tassa and Cohen’s method).
The accuracy of our algorithm is above 30% when k = 10,
but it drops considerably when k increases. This shows that
Tassa and Cohen’s method provides a high degree of privacy
protection when k is large.

6. CONCLUSION
This paper presents a de-anonymization algorithm against
several representative graph anonymization techniques. Ex-
periments with real data show that our algorithm can re-
identify up to 43% of the individuals from the anonymized
graphs generating by the existing techniques, which demon-
strates the effectiveness of our algorithm.

7. REFERENCES
[1] http://www.wsdm2013.org/index.php/authors/

data-challenge.

[2] L. Backstrom, C. Dwork, and J. M. Kleinberg.
Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural
steganography. In WWW, pages 181–190, 2007.

[3] F. Bonchi, A. Gionis, and T. Tassa. Identity
obfuscation in graphs through the information
theoretic lens. In ICDE, 2011.

[4] J. Cheng, A. W.-C. Fu, and J. Liu. K-isomorphism:
privacy preserving network publication against
structural attacks. In SIGMOD, pages 459–470, 2010.

[5] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.
Anonymizing bipartite graph data using safe
groupings. pages 115–139, 2010.

[6] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and

C. Li. Resisting structural re-identification in
anonymized social networks. pages 797–823, 2010.

[7] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

[8] K. Liu and E. Terzi. Towards identity anonymization
on graphs. SIGMOD, pages 93–106, 2008.

[9] T. Tassa and D. Cohen. Anonymization of centralized
and distributed social networks by sequential
clustering. TKDE, 99(PrePrints), 2012.

[10] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. In ICDE,
pages 506 –515, 2008.

[11] L. Zou, L. Chen, and M. T. özsu. K-automorphism: A
general framework for privacy preserving network
publication. pages 946–957, 2009.

