PrivGene: Differentially Private Model Fitting Using Genetic Algorithms

Jun Zhang¹ Zhenjie Zhang² Marianne Winslett^{2,3} Xiaokui Xiao¹ Yin Yang²

E-

1.Nanyang Technological University Singapore {jzhang027, xkxiao}@ntu.edu.sg

2. Advanced Digital Sciences Center Singapore {yin.yang, zhenjie}@adsc.com.sg

3. University of Illinois USA winslett@illinois.edu

1. Background

Database system with differential privacy

3. Enhanced Exponential Mechanism

□ The assumption of enhanced exponential mechanism

Statistical model behind the wall

where D and D' are neighboring databases that differ by at most one tuple

Model fitting problems

$$f(\cdot, D) \longrightarrow \text{quality function of } \omega$$

$$f(\cdot, D) \longrightarrow \text{quality function of } \omega^*$$

$$Our Target:$$
Return a solution with best
possible quality under ε -
differential privacy

 $f(\omega, D) = h(\omega) + \sum_{i=1}^{n} q(\omega, t)$

The bound of exponential mechanism is $\Delta_1 = \max_{\omega \in \Omega, t, t' \in T} q(\omega, t) - q(\omega, t')$

• New bound in enhanced exponential mechanism is $\Delta_2 = \max_{\substack{\omega, \omega' \in \Omega, t \in T}} q(\omega, t) - q(\omega', t)$ And the final bound is the minimum value $\Delta = \min(\Delta_1, \Delta_2)$

Case study: linear SVM
$$f(\omega, D) = -\left(\frac{1}{2}|\omega|^2 + C \cdot \sum_{(x,y)\in D} (1 - yx^T\omega)_+\right)$$

$$\Delta_{1} = 2C \cdot \max_{\omega \in \Omega} (|\omega|_{1} + 1) \quad \Delta_{2} = 2C \cdot \max_{\omega, \omega' \in \Omega} |\omega - \omega'|_{1}$$

2. PrivGene

- A novel framework for differentially private model fitting based on genetic algorithms (GA)
- PrivGene is applicable to logistic regression, SVM classification and k-means clustering
- PrivGene runs iteratively to improve candidate solutions by following operations
 - Crossover
 - Mutation

> Selection with **Differential Privacy** $f(\cdot, D)$

4. Experiments

misclassification rate misclassification rate 55% 50% 50% 40% ┟╴┠┈┈╴┠╼╌┠┈┈╸┠╼╾┠┈┈╸┠╼╍┠┈┈╸┠╼╍┠┈┈╸┠╼╍┠┈╸╸┠╼╍┠┈╸╸┠╼╸┠^{┈╸╸} 30% 35% 30% 20%

NANYANG

JNIVERSITY

TECHNOLOGICAL

Adult – SVM Classification

DVANCED DIGITAL SCIENCES CENTER

