
Private Release of Graph Statistics using Ladder Functions

Jun Zhang1 Graham Cormode2 Cecilia M. Procopiuc3∗ Divesh Srivastava4 Xiaokui Xiao1

1Nanyang Technological University 2University of Warwick
{jzhang027, xkxiao}@ntu.edu.sg g.cormode@warwick.ac.uk

3Google Inc. 4AT&T Labs – Research
mpro@google.com divesh@research.att.com

ABSTRACT
Protecting the privacy of individuals in graph structured data while
making accurate versions of the data available is one of the most
challenging problems in data privacy. Most efforts to date to per-
form this data release end up mired in complexity, overwhelm the
signal with noise, and are not effective for use in practice. In this
paper, we introduce a new method which guarantees differential
privacy. It specifies a probability distribution over possible outputs
that is carefully defined to maximize the utility for the given input,
while still providing the required privacy level. The distribution is
designed to form a ‘ladder’, so that each output achieves the highest
‘rung’ (maximum probability) compared to less preferable outputs.
We show how our ladder framework can be applied to problems of
counting the number of occurrences of subgraphs, a vital objective
in graph analysis, and give algorithms whose cost is comparable
to that of computing the count exactly. Our experimental study
confirms that our method outperforms existing methods for count-
ing triangles and stars in terms of accuracy, and provides solutions
for some problems for which no effective method was previously
known. The results of our algorithms can be used to estimate the
parameters of suitable graph models, allowing synthetic graphs to
be sampled.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity & protection
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1. INTRODUCTION
A large amount of private data can be well-represented by

graphs. Social network activities, communication patterns, dis-
ease transmission, and movie preferences have all been encoded as
graphs, and studied using the tools of graph theory. Given the pri-
vate nature of the information stored in graphs, and the increasing
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pressure to allow controlled release of private data, there has been
much interest in ways to do so with some guarantee of anonymity.

The current locus of privacy work is around differential privacy.
The model is popular, since it offers both provable properties on
the results and practical algorithms to provide them. It is a statis-
tical model of privacy which ensures that the output of the process
undergoes sufficient perturbation to mask the presence or absence
of any individual in the input. This model is very effective for re-
leasing data in the form of histograms or counts, since the magni-
tude of the statistical noise is often dominated by random variation
in the data. Applying this model to graph data has proven much
more fraught. The main technical roadblock is that direct appli-
cation of standard methods seems to require such a large scale of
random modification of the graph input as to completely lose all its
properties. Concretely, any method which tries to directly output
a modified version of the input graph under differential privacy is
indistinguishable from random noise.

Instead, progress has been made by focusing on releasing prop-
erties of the input graph under differential privacy, rather than the
graph itself. For example, it is straightforward to release the num-
ber of nodes and edges with this guarantee, by appealing to stan-
dard techniques. It is valuable to find statistical properties of the
graph, since there are many random graph models which take these
as parameters (e.g., Kronecker graph models [26] and Exponen-
tial Random Graph Models [17]), and allow us to sample graphs
from this family, which should have similar properties to the input
graph. The properties of the graph are also important in their own
right, determining, for instance, measures of how much clustering
there is in the graph, and other characteristics of group behavior.
See the discussion in [17], and references therein.

The problem then becomes one of providing effective ways to
release statistics on the input graph privately. The most impor-
tant statistics are subgraph counts: the number of occurrences of
particular small subgraphs within the input graph. This remains a
challenging problem, since standard differential privacy techniques
still add a large amount of noise to the result. Take as a canonical
problem the question of counting the number of triangles within a
graph. The presence or absence of one relationship (represented by
an edge) in the graph can contribute to a large number of potential
triangles, and so the noise added to the count has to be scaled up by
this amount. There have been numerous prior attempts to privately
release statistics on graphs via more complex methods, but these
still suffer from high noise, and high running time.

In this paper, we introduce a new technique for producing differ-
entially private output, which is applied to the problem of produc-
ing subgraph counts. The technique builds upon ideas from differ-
ential privacy, specifically notions of the “sensitivity” of a function,
and sampling possible output values using the exponential mecha-
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Figure 1: Examples of subgraphs

nism and a carefully tuned quality function. We combine these in a
new way to define a class of “ladder functions”, which provide the
optimal sampling distribution for outputs. When applied to sub-
graph counting queries, the results are efficient to compute, and
improve substantially over prior work on these problems, where
applicable.

1.1 Our Contributions
We show how to answer subgraph counting queries in a differ-

entially private manner [7]. Given a subgraph H, e.g., a triangle,
we aim to release the number of isomorphic copies of H in the sen-
sitive graph, while protecting individual privacy in the meantime.
We write fH(g) to denote the function that computes the number of
copies of subgraph H in graph g. We focus on a number of impor-
tant classes of H. The function f� counts the number of triangles in
the graph: this is the most heavily studied subgraph counting query,
as the triangle is the smallest non-trivial subgraph of interest. Other
important subgraph counting functions include: fk�, for counting k-
stars (one node of degree k connected to k nodes of degree 1); fkC,
for counting k-cliques; and fk� for counting k-triangles (a pair of
adjacent nodes i, j that have k common neighbors). Figure 1 shows
the smallest non-trivial example of each of these classes: note that
the 3-clique and the 1-triangle are simply the standard triangle.

We draw up the following list of criteria that our desired solution
for differentially private subgraph counting should satisfy:
1. The solution should achieve pure differential privacy;

2. It should be applicable to a wide range of queries, e.g., triangle
counting, k-star counting, k-triangle counting and k-clique counting
for a constant k;

3. Its time complexity should be no larger than that of computing
the true query answer for the queries of interest;

4. It should have high accuracy on its output, bettering that of any
previous applicable solution.

Outline of Ladder Framework Development. Our ladder frame-
work achieves all the above criteria. It relies on the careful design
of a probability distribution for outputting answers to count queries
that tries to maximize the probability of outputting the true answer,
or one that is near to it, and minimize the probability of outputting
answers that are far from the true answer. The framework of differ-
ential privacy places constraints on how these probabilities should
behave: the probability of providing output x for input graph g
should be “close” (as determined by the parameter ε) to that for
input graph g′, if g and g′ are close (differ by one edge). Rather
than go right back to first principles to design these probability dis-
tributions, we make use of the exponential mechanism [25], since
this approach is general: any differentially private mechanism can
be expressed as an exponential mechanism.

Instantiating the exponential mechanism still takes some care-
ful design. We arrive at the design of a symmetric “ladder func-
tion” specific to the input graph g, so-called because it is formed
from a series of rungs. The first rung groups together a num-
ber of outputs that are close to the true answer to fH(g) (i.e.
fH(g)±1, fH(g)±2 . . .). The second rung groups together outputs
that are a little further away, and so on (see Figure 3). The height of
each rung determines the probability of outputting the correspond-

ing values, while the width is the number of output values sharing
the same height. Ideally, we would make each rung as narrow as
possible, to maximize the dropoff in probabilities away from fH .
However, to guarantee differential privacy, we need to make the
rungs wide enough so that the ith rung of the ladder for g overlaps
with the i−1st, ith or i+1st rung of the ladder for all neighboring
g′ (in the language of the exponential mechanism, we seek bounded
‘sensitivity’ of the derived quality function). We call this the “small
leap property”.

It turns out that we can design such ladder functions which have
rungs that are not too wide but which satisfy the small leap prop-
erty. Moreover, these can be computed efficiently from the input
graph g and used to perform the required output sampling. Our de-
velopment of these objects takes multiple steps. First, we fill in the
necessary details of differential privacy (Section 2). Then we show
how the use of ladder functions can lead to a practical differentially
private solution, if we assume the small leap property, and that the
functions converge to a constant rung width (Section 3). We still
have to show that we can create such functions, and this is the focus
of Section 4, where we show that the concept of “local sensitivity
at distance t” can be used to create a ladder function with the re-
quired properties. This provides a general solution which satisfies
privacy; however, some of the quantities required can be time con-
suming to compute for certain subgraph counting queries. Hence,
Section 5 considers how to instantiate our framework for specific
queries, and provides alternate ladder functions for some queries to
enable efficient computation. Our experimental evaluation of this
approach, and comparison with previous works (where applicable)
is detailed in Section 6.

1.2 Previous Work on Subgraph Counting
An obvious first attempt to differentially private subgraph count-

ing is to apply the Laplace mechanism [11]. The Laplace mecha-
nism answers a (numeric) query f by adding Laplace noise to the
true answer, where the scale of noise is proportional to the global
sensitivity of f . The global sensitivity is defined as the maximum
possible change of query answer if one tuple is added to/deleted
from an arbitrary database. This method fails since the global sen-
sitivity of subgraph counting queries is very large, making the noise
large enough to overwhelm the true answer. In the case of triangles,
for example, adding or deleting an edge can affect a number of tri-
angles proportional to the number of nodes, and hence the global
sensitivity is very high.

Nissim et al. [29] and Karwa et al. [17] present an idea of uti-
lizing a local version of global sensitivity, called local sensitivity,
to build the noise distribution. The local sensitivity is a function of
the input database, which is equal to the maximum change of query
answer if one tuple is added in/deleted from the input database. The
local sensitivity can be dramatically smaller than its global counter-
part, but cannot be used directly to guarantee privacy. Instead, an
upper bound on local sensitivity called smooth sensitivity is com-
puted as a part of the noise scale. In [17], the authors give algo-
rithms for computing smooth sensitivity of f� and fk�. However,
their idea fails when the smooth sensitivity of a query is hard to
compute, e.g., fk�. In recompense, they propose an approach tai-
lored specifically for fk�, which only achieves a restricted version
of differential privacy.

Instead of answering the subgraph counting query directly, Chen
et al. [5] release a lower bound on the result, whose global sensitiv-
ity is relatively low. This method suffers from a bias between the
true query answer and the lower bound, in exchange for less noise.
The authors claim that their method can be extended to a variety of
subgraph counting queries, but it involves solving a linear program



Table 1: Table of notation

Notation Description
f ,g the graph query and its sensitive input

Gn the set of simple graphs with n nodes

d(g,g′) minimum edit distance between two graphs

GS global sensitivity of f
LS(g) local sensitivity of f , given g
LS(g, t) local sensitivity of f at distance t, given g
q(g,k) quality of output k, given input g
Δq sensitivity of quality function q
It(g) the ladder function

with O(L) variables where L equals the number of subgraphs H in
the input times the number of edges in H. So the time complexity is
super-quadratic in the answer value, making this method infeasible
even for an input graph of moderate size (see details in Section 6).

Finally, Hay et al. [15] give a differentially private algorithm for
publishing degree sequence of a sensitive graph. Since the number
of k-stars is a function of the degree sequence, this approach implic-
itly allows k-star counting. It first utilizes the Laplace mechanism
to generate a private version of the degree sequence, then applies a
postprocessing step to enforce consistency of the sequence in order
to reduce noise. Though better than the naive Laplace mechanism,
it is reported to be less accurate than the solutions in [17] on k-
star counting (see Section 6.3 of [17]). We note that this method
was not designed for k-star counting; also it does not support other
counting queries discussed in this paper.

2. PRELIMINARIES
In this section, we review the definition of differential privacy,

two conventional mechanisms to achieve differential privacy, and
some basic concepts of local sensitivity. The notational conven-
tions of this paper are summarized in Table 1.

2.1 Differential Privacy
Let g ∈ Gn be a sensitive simple graph with n nodes, and f be the

subgraph counting query of interest. Differential privacy requires
that, prior to f (g)’s release, it should be modified using a random-
ized algorithm A, such that the output of A does not reveal much
information about any edge in g. The definition of differential pri-
vacy that we adopt in the context of graphs is as follows:

DEFINITION 2.1 (ε -DIFFERENTIAL PRIVACY [11, 15]). A
randomized algorithm A satisfies ε-differential privacy, if for any
two graphs g and g′ that differ by at most one edge, and for any
possible output O of A, we have

Pr [A(g) = O]≤ eε ·Pr
[A(g′) = O

]
, (1)

where Pr[·] denotes the probability of an event.

In what follows, we say that two graphs g,g′ which differ by at most
one edge are neighboring, i.e., their minimum edit distance [4]
d(g,g′) ≤ 1. While there are many approaches to achieving dif-
ferential privacy, the best known and most-widely used two for this
purpose are the Laplace mechanism [11] and the exponential mech-
anism [25].

The Laplace mechanism releases the result of a function f that
takes as input a dataset and outputs a vector of numeric values.
Given f , the Laplace mechanism transforms f into a differentially
private algorithm by adding i.i.d. noise (denoted as η) into each
output value of f . The noise η is sampled from a Laplace distribu-
tion Lap(λ ) with the following pdf: Pr[η = x] = 1

2λ e−|x|/λ . Dwork

et al. [11] show that the Laplace mechanism achieves ε-differential
privacy if λ ≥ GS f /ε , where GS f is the global sensitivity of f . In
our problem setting (i.e., f is a subgraph counting query), GS f is
defined as follows:

DEFINITION 2.2 (GLOBAL SENSITIVITY [11]). Let f be a
function that maps a graph into a real number. The global sen-
sitivity of f is defined as

GS f = max
g,g′ |d(g,g′)≤1

∣∣ f (g)− f (g′)
∣∣ , (2)

where g and g′ are any two neighboring graphs.

Intuitively, GS f measures the maximum possible change in f ’s out-
put when we modify one arbitrary edge in f ’s input.

For an analysis task f with a categorical output (e.g., a zipcode),
injecting random noise no longer yields meaningful results, but the
exponential mechanism [25] can be used instead. The exponential
mechanism releases a differentially private version of f , by sam-
pling from f ’s output domain Ω. The sampling probability for
each k ∈ Ω is determined based on a user-specified quality func-
tion q, which takes as input any dataset g and any element k ∈ Ω,
and outputs a numeric score q(g,k) that measures the quality of
k: a larger score indicates that k is a better output with respect to
g. More specifically, given a graph g, the exponential mechanism
samples k ∈ Ω with probability:

Pr[k is selected] ∝ exp

(
ε

2Δq
·q(g,k)

)
, (3)

where Δq is the sensitivity of the quality function, i.e.,

Δq = max
g,g′,k∈Ω

∣∣q(g,k)−q(g′,k)
∣∣ for g,g′ s.t. d(g,g′)≤ 1.

McSherry and Talwar [25] prove that the exponential mechanism
ensures ε-differential privacy.

Both mechanisms can be applied quite generally; however, to
be effective we seek to ensure that (i) the noise introduced does
not outweigh the signal in the data, and (ii) it is computationally
efficient to apply the mechanism. This requires a careful design of
the functions to use in the mechanisms.

2.2 Local Sensitivity
The scale of noise added by the Laplace mechanism is propor-

tional to GS f of the query, when the privacy budget ε is fixed. For
all queries discussed in this paper, this approach is not effective
since they all have large GS f relative to the size of the query an-
swer. In [29], the authors seek to address this problem by present-
ing a local measurement of sensitivity, as in Definition 2.3:

DEFINITION 2.3 (LOCAL SENSITIVITY [29]). Let f be a
function that maps a graph into a real number. The local sensi-
tivity of f is defined as

LS f (g) = max
g′ |d(g,g′)≤1

∣∣ f (g)− f (g′)
∣∣ , (4)

where g′ is any neighboring graph of g.

Note that global sensitivity can be understood as the maximum of
local sensitivity over the input domain, i.e., GS f = maxg LS f (g).
For simplicity, we write GS and LS(g) instead in the remainder
of the paper, if there is no ambiguity about the subgraph counting
query of interest in context.

We refine the definition of local sensitivity, by defining the sen-
sitivity for a particular pair of nodes (i, j), denoted by LSi j(g), to
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Figure 2: Examples of local sensitivity at distance t

indicate the magnitude of change of f when the connection be-
tween i and j is modified (added if absent; deleted if present) in the
input graph. This then satisfies LS(g) = maxi, j LSi j(g).

Although tempting, it is not correct to simply substitute LS(g)
for GS in the Laplace mechanism. This is because LS(g) itself con-
veys information from the sensitive data. To address this problem,
Nissim et al. [29] introduce smooth sensitivity, an upper bound of
LS(g), and show that differential privacy can be achieved by inject-
ing Cauchy noise (instead of Laplace noise) calibrated to smooth
sensitivity. As we show in Section 6, however, the adoption of
Cauchy noise considerably degrades the quality of the output from
a differentially private algorithm. This issue could be alleviated by
combining smooth sensitivity with Laplace noise, but the resulting
solution would only achieve a weakened version of ε-differential
privacy (referred to as (ε,δ )-differential privacy [10]).

In this paper, we do not use smooth sensitivity, but adopt an in-
termediate notion of local sensitivity at distance t as a crucial part
of our solution.

DEFINITION 2.4 (LOCAL SENSITIVITY AT DISTANCE t [29]).
The local sensitivity of f at distance t is the largest local sensitivity
attained on graphs at distance at most t from g. The formal
definition is:

LS(g, t) = max
g∗|d(g,g∗)≤t

LS(g∗). (5)

Note that LS(g, t) is a monotonically increasing function of t.

By analogy with LS(g, t) and LS(g), we further define LSi j(g, t) as
the largest LSi j(·) attained on graphs at distance at most t from g.
Then LS(g, t) = maxi, j LSi j(g, t).

Figure 2 gives an example of local sensitivity at distance t for
triangle counting. The initial graph g in Figure 2(a) contains five
nodes, three edges and no triangle. Its local sensitivity equals 1,
achieved by adding edge (i, j) to the graph, i.e., LS(g) = LSi j(g) =
1. Thereafter, LS(g,1) allows one extra modification before cal-
culating LS. In Figure 2(b), we show how the dashed edge (b, j)
affects LSi j(·), making LS(g,1) = LSi j(g,1) = 2. Furthermore, we
find that LS could never rise to 3 within 2 steps of modifications,
and Figure 2(c) illustrates one example achieving LS(g,3) = 3.

3. OVERVIEW OF SOLUTION
This section presents the steps for using our ladder framework

for answering subgraph counting queries under ε-differential pri-
vacy, given an appropriate function with some assumed properties
(these functions are instantiated and proved to possess these prop-
erties in subsequent sections). Like the Laplace mechanism, we
add a certain amount of noise to the true answer to prevent infer-
ence of sensitive information. However, to achieve better results,
we aim to exploit the fact that most realistic graphs can tolerate
a lower amount of noise while still providing the needed privacy.
Towards this end, we need to tailor the noise to the given input,
without revealing anything about the input by our choice of noise
distribution. We introduce how to build such a distribution through
the exponential mechanism in Section 3.1, then give an algorithm
for efficient sampling in Section 3.2.

Figure 3: An example of a ladder quality

3.1 Building a Solution Distribution
Assume that we are given a query fH(g) that counts the number

of subgraphs H in g. Let η be the distribution of the solution that
we return as a private version of fH(g). In a nutshell, η is a dis-
crete distribution defined over the integer domain, such that η(k)
increases with q(g,k), where q(g,k) ≤ 0 is a non-positive integer
that quantifies the loss of data utility when we publish k instead of
fH(g). We refer to q as a quality function, since we will use it as a
quality function in the exponential mechanism. The expression of
η(k) as a function of q(g,k) is given in equation (3) of Section 2.1.

Our choice of q is determined by a function It(g), which de-
fines how q varies. Figure 3 gives a working example of the q and
It(g). In particular, q is a symmetric function over the entire in-
teger domain, centered at fH(g). We define the quality function
to take its maximum value at fH(g). Without loss of generality,
we set q(g, fH(g)) = 0. For other possible answers, the quality de-
creases as the distance to the true answer increases. The decreasing
speed is controlled by function It(g). We refer to each quality level
(0,−1,−2, . . .) as a rung of the ladder. In the figure, the first rung,
corresponding to a quality level of −1, consists of the I0(g) integers
on each side of fH(g), whose distances to fH(g) are no larger than
I0(g). The next rung is formed of the next I1(g) integers on each
side with quality −2, and so on. We say that It gives the “width” of
the t +1st rung.

DEFINITION 3.1 (LADDER QUALITY). Formally, given
function It(g) we define the ladder quality function q(g,k) by

(i) q(g, fH(g)) = 0;

(ii) ∀k ∈ fH(g)±
(

∑u−1
t=0 It(g),∑u

t=0 It(g)
]
, set q(g,k) =−u−1.

After assigning each integer a quality score, we need to deter-
mine the sensitivity of the quality function,

Δq = max
k,g,g′ |d(g,g′)≤1

|q(g,k)−q(g′,k)|,

in order to apply the exponential mechanism. For arbitrary query
class fH and function It(g), there is no simple answer: it can be the
case that Δq is unbounded. Consequently, we restrict our attention
to a class of well-behaved functions It(g) that we will refer to as
ladder functions. By analogy, we require that if we place two lad-
ders corresponding to neighboring graphs g,g′ next to each other
and stand on the t’th rung of g’s ladder, we can easily “leap across”
to g′’s ladder, since the rung at the corresponding position is at al-
most the same height. Formally,

PROPERTY 3.1 (SMALL LEAP PROPERTY). The ladder
quality q(g,k) defined by It(g) has bounded Δq.

In Section 4, we give a class of functions that meet this property
since they have a constant Δq = 1. For now, we simply assume that
Δq is bounded and known to us, therefore, we can build the solution
distribution using the exponential mechanism.



Algorithm 1 NoiseSample ( fH , g, ε , It ): returns f ∗

1: Compute true answer fH(g);

2: range[0] = { fH(g)}; weight[0] = 1 · exp
(

ε
2Δq

·0
)

;

3: Initialize dst = 0;
4: for t = 1 to M do
5: range[t] = fH(g)± (dst,dst + It−1(g)];

6: weight[t] = 2It−1(g) · exp
(

ε
2Δq

·−t
)

;

7: dst = dst + It−1(g);
8: end for

9: weight[M+1] =
2C · exp

(
ε

2Δq
·−(M+1)

)
1− exp

(
− ε

2Δq

) ;

10: Sample an integer t ∈ [0,M + 1] with a probability weight[t]
over sum of weights;

11: if t ≤ M then
12: return a uniformly distributed random integer in range[t];
13: else
14: Sample an integer i from the geometric distribution with pa-

rameter p = 1− exp
(
− ε

2Δq

)
;

15: return a uniformly distributed random integer in fH(g)±
{dst + i ·C+(0,C]};

16: end if

3.2 Efficient Sampling from the Distribution
Our solution proceeds by using the ladder quality function to

instantiate the exponential mechanism. This results in a solution
which is guaranteed to provide differential privacy. However, the
output of the mechanism can range over a very large, if not un-
bounded, number of possibilities, which we must sample from. The
naive approach of computing the probability associated with each
output value is not feasible: there are too many to calculate. In-
stead, we need a way to perform sampling in a tractable way. To
reduce the time complexity of working with this infinite distribu-
tion, we assume a convergence property of It(g), that there is a
“bottom rung” of our ladder below which all rungs are the same
width.

PROPERTY 3.2 (REGULAR STEP PROPERTY). It(g) con-
verges to a constant C within M steps, i.e., It(g) = C for any
t ≥ M.

With these two properties, we can more effectively use the expo-
nential mechanism, since there is a bounded number of sampling
probabilities. Algorithm 1 gives pseudocode for the sampling pro-
cess under these assumptions, which we now explain. Our algo-
rithm aggregates all integers with the same quality, say −t, as t’th
rung. The range function (Line 5) describes the domain of each
rung, and the weight function (Line 6) gives the sum of weights
within the domain. We illustrate how to calculate the range and
weight for the first few rungs, e.g., rung 0 (the center) to rung M
(Lines 2-8). For other rungs with indices t > M, we observe that
their weights 2C · exp(ε/2Δq ·−t) form a geometric sequence of t
with common ratio exp(−ε/2Δq). Therefore, we can write down a
closed form sum of weights for all remaining rungs, as in Line 9,
considered as one large rung indexed by M+1.

Lines 10-16 perform the random sampling. First, one rung is
sampled with a probability proportional to its weight. If it is rung
M+1, then we need to further specify the rung index by sampling
from a geometric distribution (Line 14). At the end, we return a
random integer within the range of the sampled rung as the final
result. The time complexity of Algorithm 1 except Line 1 is O(M).

Privacy guarantee. The correctness of Algorithm 1 follows from
the correctness of the exponential mechanism [25]. Therefore, we
have the following theorem (proof in Appendix B).

THEOREM 3.1. Algorithm 1 satisfies ε-differential privacy,
provided It has Properties 3.1 and 3.2.

4. LADDER FUNCTIONS
The previous section explains how to build and sample a solu-

tion distribution with Algorithm 1, given a suitable function It(g).
In what follows, we consider how best to define such functions in
general; we then apply this insight for the functions of interest that
count various types of subgraph in the next section.

Some requirements for a good function are as follows. It(g)
should be a function of input graph g and step t, such that (i) It(g)
satisfies Properties 3.1 and 3.2, to guarantee the correctness of Al-
gorithm 1; (ii) It(g) is small. The rationale is that It(g) controls
the shape of the ladder. The smaller It(g) the faster the quality
decreases away from the true answer, and hence, the exponential
mechanism tends to generate a distribution with higher probabili-
ties for outputs closer to the true answer (smaller noise). In what
follows, we first introduce a class of ladder functions, and give sev-
eral examples. Then we prove that ladder functions always achieve
a constant value for Δq, the sensitivity of the quality function (pro-
viding Property 3.1). Last, we construct a convergent ladder func-
tion for subgraph counting queries which always converges to the
global sensitivity within

(n
2

)
steps (meeting Property 3.2).

We now formalize our notion of a ladder function.

DEFINITION 4.1 (LADDER FUNCTION). It(g) is said to be a
ladder function of query f if and only if

(a) LS f (g)≤ I0(g), for any g;

(b) It(g′)≤ It+1(g), for any pair of neighboring graphs g,g′, and
any nonnegative integer t.

A straightforward example of a ladder function is the constant
function It(g) = GS, since LS(g) ≤ GS for any g, and a constant
always satisfies the second requirement. However, as discussed
in Section 2.2, GS can be extremely large for subgraph counting,
which does not adapt to typical graphs, which may not require so
much noise. The local sensitivity It(g) = LS(g) could be much
smaller than GS, but unfortunately is not a ladder function because
LS(g′) ≤ LS(g) does not hold for all pairs of neighboring graphs.
Our insight for designing good ladder functions is that we can use
a relaxation of local sensitivity instead. Specifically, we adopt the
notion of local sensitivity at distance t, i.e., LS(g, t). We now prove
that this choice is optimal within our framework: local sensitivity
at distance t is the minimum ladder function, i.e. it is the lower
envelope of all possible ladder functions.

THEOREM 4.1. LS(g, t) is the minimum ladder function that
satisfies LS(g, t)≤ It(g) for any ladder function It(g).

PROOF. We first prove that LS(g, t) is a ladder function.
(i) LS(g) = LS(g,0) (meeting Definition 4.1(a));
(ii) {g∗ | d(g′,g∗)≤ t} is a subset of {g∗ | d(g,g∗)≤ t +1},

given a pair of neighboring graphs g,g′ such that d(g,g′) ≤ 1.
Therefore, it meets Definition 4.1(b), since:

LS(g′, t) = max
g∗|d(g′,g∗)≤t

LS(g∗)

≤ max
g∗|d(g,g∗)≤t+1

LS(g∗) = LS(g, t +1).



Next we prove LS(g, t) is no larger than any ladder function It(g)
by induction on t.

Basis: when t = 0, LS(g,0) = LS(g)≤ I0(g) for all g;

Inductive step: suppose that LS(g, t)≤ It(g) holds for all g. It must
be shown that LS(g, t +1)≤ It+1(g) holds for all g. For any pair of
neighboring graphs g,g′, we have It+1(g) ≥ It(g′) given It(g) is a
ladder function. Thus, It+1(g) ≥ maxg′ |d(g,g′)≤1 It(g′) holds for all

g. Then given the assumption that LS(g, t)≤ It(g) holds for all g,

It+1(g)≥ max
g′ |d(g,g′)≤1

It(g′)≥ max
g′ |d(g,g′)≤1

LS(g′, t) by hypothesis

= max
g′ |d(g,g′)≤1

max
g∗|d(g′,g∗)≤t

LS(g∗)

= max
g∗|d(g,g∗)≤t+1

LS(g∗) = LS(g, t +1)

thus showing that indeed LS(g, t +1)≤ It+1(g) holds for all g. By
induction, LS(g, t)≤ It(g) holds for all g and all nonnegative t.

LS(g, t) plays an important role in our framework. For certain
subgraph counting queries, e.g., f�, fk�, it is the best ladder func-
tion that we can ever find. However, it is not always the preferred
choice: as shown in Section 5, LS(g, t) can be very hard to com-
pute for some queries. To tackle this problem, we will present how
to construct an alternate ladder function (basically, a relaxation of
LS(g, t)) which is (i) computationally efficient and (ii) still much
smaller than GS.

4.1 Bounded Δq
This subsection proves the most important property of ladder

functions, that they satisfy Property 3.1.

THEOREM 4.2. If It(g) is a ladder function then the resulting
quality function q has Δq = 1.

PROOF. To prove this theorem, we must show that for any
pair of neighboring graphs g,g′, and any integer k ∈ Z, |q(g,k)−
q(g′,k)| ≤ 1 always holds. That is, the quality ascribed to provid-
ing k as an output differs by at most 1 for neighboring graphs. In
what follows, we discuss three different cases based on how close
the value of k is to the top of the ladder.

Special case 1, the center: k = fH(g) ⇒ q(g,k) = 0. Given
the properties of local sensitivity and ladder function (Defini-
tion 4.1(a)) |k− fH(g′)| ≤ LS(g′) and LS(g′)≤ I0(g′), we have

fH(g′)− I0(g′)≤ fH(g)≤ fH(g′)+ I0(g′). (6)

That is, since k is the query answer for a neighboring graph of
g′, it must fall within the local sensitivity of the query answer for
g′. From Definition 3.1(i) and (ii) with u = 0 we have q(g′,k) ∈
{0,−1}. Thus, the difference of quality is bounded by 1.

Special case 2, first rung: If k ∈ fH(g)+(0, I0(g)], then q(g,k) =
−1: k is on the first rung. By the construction of the ladder func-
tion, q(g′,k) should be on the center, the first or the second rung,
and so the quality changes by at most 1. Formally, the lower bound
of k as a function of g′ is

k > fH(g)≥ fH(g′)− I0(g′) (from (6));

and the upper bound is

k ≤ fH(g)+ I0(g)≤ fH(g′)+ I0(g′)+ I1(g′),

using Definition 4.1(b) to show I0(g) ≤ I1(g′), combined with (6).
Applying Definition 3.1, the value of the quality function satisfies
q(g′,k) ∈ {0,−1,−2}, and so the bound holds.

General case: Consider k ∈ fH(g) + (∑u−1
t=0 It(g),∑u

t=0 It(g)] so
q(g,k) = −u− 1, where u > 0—we are on the u+ 1st rung on the
ladder for g. We argue that we can only climb or descend a single
rung when we move to the ladder for g′. The lower bound on k as a
function of g′ can be obtained using similar steps to case 2 above,
from (6) and u−1 invocations of Definition 4.1(b):

k > fH(g)+
u−1

∑
t=0

It(g) = fH(g)+ I0(g)+
u−1

∑
t=1

It(g)

≥ fH(g′)+
u−2

∑
t=0

It(g′).

The upper bound uses a similar argument:

k ≤ fH(g)+
u

∑
t=0

It(g)

≤ fH(g′)+ I0(g′)+
u+1

∑
t=1

It(g′) = fH(g′)+
u+1

∑
t=0

It(g′).

Therefore, q(g′,k) is close to q(g,k) = u−1:

k ∈ fH(g′)+

(
u−2

∑
t=0

It(g′),
u+1

∑
t=0

It(g′)

]

⇒ q(g′,k) ∈ {−u,−u−1,−u−2} .
The analysis above proves the result for all k ≥ fH(g). For in-

tegers k < fH(g), the proofs of special case 2 and the general case
are symmetric, and yield the required result.

4.2 Convergence
This subsection shows how to design a convergent ladder func-

tion for subgraph counting queries that meets Property 3.2. First,
we state a useful lemma for our subsequent analysis. The proof is
immediate given the definition of ladder functions, so we omit it.

LEMMA 4.1. If f (g, t) and h(g, t) are ladder functions,
min( f (g, t),h(g, t)) is a ladder function.

Using this result, one can easily design a convergent ladder
function, e.g., min(It(g),GS), if the original function It(g) is un-
bounded. This is critical since Algorithm 1 requires a convergent
function. Unlike LS(g, t) which converges to GS naturally, some
ladder functions may need to be explicitly bounded by GS.

THEOREM 4.3. For any subgraph counting query fH ,
min(It(g),GS) is a ladder function of fH that converges to GS
within

(n
2

)
steps, given It(g) is a ladder function of fH .

PROOF. min(It(g),GS) is a ladder function: since It(g) and GS
are both ladder functions we can invoke Lemma 4.1.

As the distance between any two graphs in Gn is no larger than(n
2

)
, we have that

{
g∗ | d(g,g∗)≤ (n

2

)}
= Gn holds for any graph

g ∈ Gn. Thus, the local sensitivity at distance
(n

2

)
equals GS, i.e.,

LS
(
g,
(n

2

))
= max

g∗|d(g,g∗)≤(n
2)

LS(g∗) = max
g∗∈Gn

LS(g∗) = GS.

Given LS(g, t) is the minimum ladder function and is monotoni-
cally increasing in t, it follows It(g)≥ LS (g, t)≥ LS

(
g,
(n

2

))
= GS

for any t ≥ (n
2

)
. Hence, min(It(g),GS) = GS for any t ≥ (n

2

)
.

Recall that the time complexity of Algorithm 1 (except Line 1)
is linear in M. Therefore we can conclude that the algorithm ter-
minates in O(n2) time for any subgraph counting query, if a ladder
function It(g) is given in advance. Quadratic time can still be large,
so in the next section, we find ladder functions for classes of sub-
graphs which converge in O(n) steps.



5. APPLICATIONS
In this section, we show how to apply our framework for a va-

riety of subgraph counting queries, including f�, fk�, fkC and fk�.
LS(g, t) of the functions f� and fk� are carefully studied in [17,29],
which can serve as ladder functions for these two queries directly.
However, as we will show in this section, computing LS(g, t) can be
hard for some queries, e.g., fkC and fk�. Instead of using LS(g, t),
we present an efficient method to build a convergent upper bound
of LS(g, t), which is shown to satisfy the requirements in Defini-
tion 4.1. Such an upper bound could be used as the ladder function
for fkC and fk�.

Graph statistics. Our detailed analysis of global sensitivity, local
sensitivity and its upper bound rely on some simple graph statistics
related to the (common) neighborhood of nodes.

DEFINITION 5.1 (GRAPH STATISTICS). Let (xi j)n×n be the
adjacency matrix of an undirected, simple graph on n nodes. xi j =
1 when there exists an edge between nodes i and j, 0 otherwise. Let
di denote the degree of node i, and dm = maxi di be the maximum
degree of the graph.

Let Ai j be the set of common neighbors of i and j. Node l be-
longs to Ai j if and only if xilxl j = 1. Let ai j = |Ai j| be the number
of common neighbors of i, j, and am = maxi, j ai j be the maximum
number of common neighbors of a pair of nodes in the graph. Let
bi j = di+d j−2ai j−2xi j denote the the number of nodes connected
to exactly one of the two nodes i, j.

5.1 LS(g, t) as Ladder Function
Triangle counting. In Lemma 5.1, we give the global sensitivity
and local sensitivity at distance t of triangle counting.

LEMMA 5.1 (CLAIM 3.13 OF FULL VERSION OF [29]).
The global sensitivity of f� is GS = n−2; The local sensitivity at
distance t of f� is LS(g, t) = maxi, j LSi j(g, t), where

LSi j(g, t) = min

(
ai j +

⌊
t +min(t,bi j)

2

⌋
,n−2

)
.

It is easy to prove that LS(g, t) converges to GS when t ≥ 2n. The
time complexity of computing LS(g, t) for t ∈ [0,2n] is O(M(n)),
where M(n) is the time needed to multiply two n×n matrices.

k-star counting. Another important problem of subgraph counting
studied in [5, 17] is k-star counting. Lemma 5.2 shows its global
sensitivity and local sensitivity at distance t.

LEMMA 5.2 (LEMMA 3.4 OF [17]). The global sensitivity of
fk� is GS = 2

(n−2
k−1

)
; The local sensitivity at distance t of fk� is

LS(g, t) = maxi, j LSi j(g, t), where

LSi j(g, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d̄i+t
k−1

)
+
( d̄ j

k−1

)
, if t ≤ Bi;(n−2

k−1

)
+
(d̄ j+t−Bi

k−1

)
, if Bi < t ≤ Bi +B j;

2
(n−2

k−1

)
, if Bi +B j < t.

Here d̄i = di − xi j and Bi = n−2− d̄i. d̄ j and B j are defined anal-
ogously. Without loss of generality, assume that di ≥ d j.

As with f�, LS(g, t) of fk� converges to GS when t ≥ 2n. It takes
O(n logn+m) time to compute LS(g, t) for t ∈ [0,2n].

5.2 Customized Ladder Function
Although LS(g, t) works well for triangle and k-star counting, it

cannot be extended to the class of queries whose LS(g, t) are NP-
complete to compute, e.g., k-clique counting for a constant k > 3

(the reduction is shown for completeness in Appendix A) and k-
triangle counting for k > 1 (proved in [17]). To address this prob-
lem, the authors of [17] propose to use a differentially private ver-
sion of local sensitivity, to replace the inefficient LS(g, t). How-
ever, this method is quite restricted because (i) it is specifically for
k-triangle counting; (ii) it achieves (ε,δ )-differential privacy only,
and ε is limited to (0, 3

2 ln 3
2 ≈ 0.6]. In this section, we illustrate

how to avoid using LS(g, t) by designing a new customized ladder
function.

5.2.1 k-clique counting
We first emphasize that we are only interested in a small constant

k here, otherwise the counting query fkC itself is hard to compute.
1- and 2-clique counting are trivial in our setting, and 3-clique (tri-
angle) counting is already well addressed in Lemma 5.1. For other
constant k > 3, we aim to design a function It(g) which satisfies all
the requirements in Definition 4.1.

First of all, we introduce some building blocks of It(g), i.e., am
(see Definition 5.1), and the global and local sensitivity of fkC in
the next lemma

LEMMA 5.3. The global sensitivity of fkC is GS =
(n−2

k−2

)
; the

local sensitivity of fkC is

LS(g) = max
i, j

C(g(Ai j),k−2),

where g(S) denotes the subgraph induced on g by the node subset
S, and C(g,k) is the number of k-cliques in graph g.

The global sensitivity is achieved when deleting one edge from a
complete graph with n nodes. The local sensitivity at (i, j), i.e.,
C(g(Ai j),k − 2), indicates the number of k-cliques that contain
nodes i and j when edge (i, j) is added.

Next we give our ladder function for k-clique counting in Theo-
rem 5.1 and explain the intuition of this design in the proof.

THEOREM 5.1.

It(g) = min

(
LS(g)+

(
am + t
k−2

)
−
(

am

k−2

)
,GS

)

is a ladder function for fkC.

PROOF. By Lemma 4.1, we learn that proving LS(g)+
(am+t

k−2

)−( am
k−2

)
is a ladder function is sufficient to prove this theorem. The

proof contains the following three steps.

(1) LS(g)≤ I0(g), for any g. This step is trivial since I0(g) = LS(g);

(2) I0(g′)≤ I1(g), for any pair of neighboring graphs g,g′. Let Ai j
(A′

i j) be the set of common neighbors of nodes i, j in g (g′). Let am

(a′m) be maximum number of common neighbors in g (g′). Note
that the size of Ai j is bounded by am.

LS(g′)−LS(g) = max
i, j

C(g′(A′
i j),k−2)−max

i, j
C(g(Ai j),k−2)

≤ max
i, j

(
C(g′(A′

i j),k−2)−C(g(Ai j),k−2)
)
.

Recall that there is only one edge difference between g and g′.
To increase the number of (k−2)-cliques in g(Ai j) by editing one
edge, one can either (i) add one edge within g(Ai j) while keeping
the set Ai j unchanged, or (ii) expand Ai j by one new node. The

maximum increase, i.e.,
( am

k−3

)
is achieved in the case that g(Ai j) is

a complete graph of size am and g′(A′
i j) is a complete graph of size

am +1. However, observe that since(
am

k−3

)
=

(
am +1

k−2

)
−
(

am

k−2

)



we have

LS(g′)≤ LS(g)+
(

am +1

k−2

)
−
(

am

k−2

)
⇔ I0(g′)≤ I1(g).

(3) It(g′) ≤ It+1(g), for any neighboring graphs g,g′ and integer

t > 0. We make use of the combinatorial identity ∑n
k=0

(k
m
)
=
(n+1

m+1

)
and obtain

LS(g′)+
(

a′m + t
k−2

)
−
(

a′m
k−2

)
= LS(g′)+

t−1

∑
i=0

(
a′m + i
k−3

)

≤ LS(g)+
(

am

k−3

)
+

t−1

∑
i=0

(
am + i+1

k−3

)

= LS(g)+
t

∑
i=0

(
am + i
k−3

)
= LS(g)+

(
am + t +1

k−2

)
−
(

am

k−2

)
,

which is equivalent to It(g′)≤ It+1(g). The central step of the proof
relies on an important property of the maximum number of com-
mon neighbors: its global sensitivity equals 1. So it holds that

a′m −am ≤ 1, and so
(a′m+i

k−3

)≤ (am+i+1
k−3

)
.

This ladder function converges to GS when t ≥ n. The major
computational overhead of It(g) for t ∈ [0,n] is LS(g), which can
be computed within O(nk) time via exhaustive search. In our exper-
iment, we implement a sophisticated algorithm which utilizes the
sparsity of the input to improve efficiency. It returns LS(g) within
a few seconds for all graphs tested in the next section.

5.2.2 k-triangle counting
Besides k-clique counting, we also present k-triangle counting as

another example of using customized ladder function. We state the
currently known results about k-triangle counting as Lemma 5.4.

LEMMA 5.4 (LEMMA 4.1 AND 4.2 OF [17]). The global
sensitivity of fk� is GS =

(n−2
k
)
+ 2(n − 2)

(n−3
k−1

)
. The local

sensitivity of fk� is

LS(g) = max
i, j

((
ai j

k

)
+ ∑

l∈Ai j

(
ail − xi j

k−1

)
+

(
al j − xi j

k−1

))
;

We also have LS(g′) ≤ LS(g)+ 3
( am

k−1

)
+ am

( am
k−2

)
, given a pair of

neighboring graphs g and g′.

Similarly, one can design a ladder function for k-triangle count-
ing, as shown in Theorem 5.2. The proof follows the same lines as
that of Theorem 5.1.

THEOREM 5.2.

It(g) = min

(
LS(g)+

t−1

∑
i=0

U(am + i),GS

)

is a ladder function for fk�, where U(a) = 3
( a

k−1

)
+a

( a
k−2

)
.

It takes t ≥ 3n steps for this ladder function to converge to GS,
and the time complexity of computing It(g) for t ∈ [0,3n] would be
O(n3) using a naive method.

To summarize, we observe some similarities between k-clique
and k-triangle counting. First, their LS(g, t) functions are both NP-
complete to compute, which motivates our customized ladder func-
tions. Second, there exist efficient ways to compute the local sen-
sitivities LS(g), and LS(g′)−LS(g) is bounded by a function of a
variable whose global sensitivity is constant, e.g., am or dm. Any
subgraph counting query with these two properties could be pro-
cessed by our framework with a customized ladder function as in
Theorems 5.1 and 5.2.

6. EXPERIMENTS

6.1 Experimental Settings

Datasets. We make use of six real-world graph datasets in our ex-
periments: AstroPh, HepPh, HepTh, CondMat and GrQc are
collaboration networks from the e-print arXiv, which cover scien-
tific collaborations between authors who submitted papers to As-
tro Physics, High Energy Physics, High Energy Physics Theory,
Condensed Matter and General Relativity categories, respectively.
In particular, if a paper is co-authored by k authors, the network
generates a completed connected subgraph (k-clique) on k nodes
representing these authors. Enron is an email network obtained
from a dataset of around half a million emails. Nodes of the net-
work are email addresses and if an address i sent at least one email
to address j, the graph contains an undirected edge from i to j.
Tabel 2 illustrates the properties of the datasets and their results to
four subgraph counting queries. All datasets can be downloaded
from Stanford Large Network Dataset Collection [21].

Baselines. To justify the performance of our algorithm (denoted
as Ladder) in answering subgraph counting queries, we compare it
with other four approaches: (i) Laplace [11], which directly injects
Laplace noise with scale GS/ε to the true subgraph counts. (ii)
Smooth [17, 29], which first computes a smooth upper bound SS
of the local sensitivity, then adds Cauchy noise scaled up by a fac-
tor of 6SS/ε to the answer. It is only evaluated on two queries f�
and fk� due to the hardness of computing SS for fkC and fk�. (iii)
NoisyLS [17], which achieves differential privacy by adding noise
proportional to a differentially private upper bound on local sensi-
tivity (instead of the smooth upper bound used in Smooth). This ap-
proach is designed for fk�, and is the only (ε,δ )-differentially pri-

vate baseline algorithm. The parameter ε is restricted to (0, 3
2 ln 2

3 ]
while δ is set to a fixed value 0.01 in our experiments. (iv) Re-
cursive [5], which answers the query by releasing a differentially
private lower bound (which has low-sensitivity) of the counting
result. The time complexity of this algorithm is super-quadratic
to the number of subgraphs. All experiments using the Recursive
mechanism failed to complete within 4 days except for two cases:
HepTh-� and GrQc-� since their counting results are relatively
small. In contrast, all local sensitivity based solutions (i.e., Ladder,
Smooth, NoisyLS) are rather efficient, and in fact share the same
time complexity.

Evaluation. We evaluate the performance of Ladder and four base-
lines on four subgraph counting queries over all six datasets. We
measure the accuracy of each method by the median relative er-
ror [17], i.e., the median of the random variable |A(g)− f (g)|/ f (g)
where A(g) is the differentially private output and f (g) is the true
answer. The reason of choosing this measurement is that the mean
of Cauchy noise (used in Smooth) is undefined. In other words,
the mean error of the Smooth method is never stable, no matter
how large the sampling set is. Therefore, in accordance with prior
works [5, 17], we choose to report median error. We also include a
bold line to indicate a relative error of 1. Any result above this line
is of no practical value. For each result reported, we repeat each
experiment 10,000 times to get the median, except for Recursive
(where we perform 100 repetitions).

6.2 Counting Queries
Figures 4-7 show all experimental results on counting queries,

varying the privacy budget ε from 0.05 to 1.6. The title of each
subfigure (e.g., AstroPh) indicates the reported dataset.



Table 2: Datasets properties
datasets nodes edges avg. deg. density � 3� 4C 2�
AstroPh 18,772 198,050 21.101 0.1124% 1,351,440 545,677,550 9,580,415 72,355,715

HepPh 12,008 118,491 19.735 0.1644% 3,358,499 1,276,967,000 150,281,372 936,890,335

HepTh 9,877 25,975 5.260 0.0533% 28,339 2,098,336 65,592 429,013

CondMat 23,133 93,439 8.078 0.0349% 173,361 37,115,060 294,008 2,349,650

Enron 36,692 183,831 10.020 0.0273% 727,044 4,909,606,844 2,341,639 36,528,276

GrQc 5,242 14,485 5.527 0.1054% 48,260 2,482,748 329,297 2,041,499

relative error = 1 Ladder Laplace Smooth Recursive
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Figure 4: Triangle counting

Triangle counting. The first query that we evaluate is the triangle
counting f� (see Figure 4). In summary, Ladder achieves good ac-
curacy on f� over all datasets. When privacy budget is relatively
large, e.g., ε = 1.6, its median relative error always stays below or
close to 0.1%. With the decrease of ε , the accuracy drops but it is
still smaller than 10% even when ε = 0.05. Compared with other
differentially private methods, Ladder clearly outperforms Laplace
and Smooth in all cases, simply because it injects less noise to
the true results. The improvement is significant since the y-axis
in shown on a log scale. As for Recursive, it is rather competitive
when ε is small, say ε ≤ 0.1. However, the gap between Recursive
and Ladder begins to grow when ε increases. To explain, recall
that the error of Recursive comes from two parts: bias of the lower
bound and noise injected to the lower bound. As ε increases, the
scale of noise reduces, while the bias is less sensitive to the change
of ε then becomes the dominating factor of the error.

k-star counting. Next we evaluate different methods for 3-star
counting f3� in Figure 5. Ladder keeps returning extremely ac-
curate results for large ε , and reasonably good results for small ε .
Meanwhile, it is still the best solution with an ε-differential privacy
guarantee in all settings. In contrast to the case of triangle count-
ing, the performance of Laplace degrades significantly compared to
other two local sensitivity based solutions. The main reason is that

GS of triangle counting is linear to n while that of 3-star counting is
quadratic. On the other hand, the counting results do not increase
so dramatically due to the locality of inputs. Therefore the relative
error of Laplace increases. Local sensitivity, however, can capture
the locality of inputs, leading to a stable relative error when the
query is changed.

k-clique counting. Figure 6 presents the results of 4-clique count-
ing ( f4C). Ladder is the only private solution besides the naive
Laplace, and the former is orders of magnitude better than the lat-
ter in terms of accuracy. The lines of Ladder always stay below
the bold lines except for two points where ε is extremely small,
and the gaps increase markedly with ε . In contrast, the quality of
results from Laplace tends to be rather poor, if it is usable at all.
Thus we conclude that Ladder is the only effective and efficient
algorithm for releasing private k-clique counting.

k-triangle counting. The last query of interest in our experiment is
2-triangle counting f2�. We have a new baseline NoisyLS for this
query and compare it with Ladder in Figure 7. The superiority of
Ladder is three-fold: (i) it is always more accurate than NoisyLS
when ε varies from 0.05 to 0.4; (ii) it has no extra constraint on
privacy budget ε; (iii) it provides stronger privacy protection than
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Figure 5: 3-star counting
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Figure 6: 4-clique counting

NoisyLS. In summary, Ladder is a more preferable solution for pri-
vate k-triangle counting.

Average degree and density. Besides the comparison among pri-
vate algorithms, we are also interested in the impact of input graphs
to the private counting results. Intuitively, a graph with more edges
(assuming a fixed number of nodes) is likely to have more copies

of subgraphs and a larger local sensitivity, but the global sensitiv-
ity is never a function of number of edges. Thus, we can expect
relatively good performance of Laplace on denser graphs. Never-
theless, the impact of graph density to local sensitivity is still un-
clear. From Table 2, we can learn that AstroPh and HepPh are
denser graphs with higher average degree, on which Laplace does
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Figure 7: 2-triangle counting

have better overall accuracy. Interestingly, local sensitivity based
algorithms like Ladder and Smooth also benefit notably from high
density inputs, implying that local sensitivity does not increase as
drastically as the counting results as the graph gets denser.

6.3 Stochastic Kronecker Models
To further justify the importance of subgraph counts, we show

how accurate counts lead to accurate graph models. Here we adopt
the stochastic Kronecker model [20], a sophisticated method which
can simulate large real-world graphs with only a few parameters.
The algorithm in [13, 26] provides a way to estimate parameters of
the simplest Kronecker model from a small set of subgraph counts:
fe (the number of edges), f�, f2� and f3�. Therefore, one can easily
build a Kronecker model then generate synthetic Kronecker graphs
with differential privacy guarantees, if provided four private counts
in advance. We aim to evaluate how the noise in private counts
affects the accuracy of Kronecker models. In this set of experi-
ments, we build three types of Kronecker models: (i) Kron-True
is a non-private model, and tuned from the true subgraph counts
of the graph; (ii) Kron-Ladder satisfies ε-differential privacy. The
privacy budget ε is split into four parts equally, and each is used
to generate a private subgraph count. The Laplace mechanism is
effective enough to release fe since it has a constant GS = 1. For
f�, f2� and f3�, we employ Ladder. (iii) Kron-Smooth is identi-
cal to Kron-Ladder except that f�, f2� and f3� are released by the
Smooth mechanism.

To measure the distortion of Kron-Ladder from Kron-True, we
look into the difference of their synthetic graphs. For Kron-True,
we simply sample 100 synthetic graphs from the model. However,
given that Ladder is a stochastic process, we first generate 100
independent Kron-Ladder models, and from each we sample 100
graphs. Therefore, Kron-Ladder is represented by a set of 10,000
graphs. Then the error between each pair of graphs from these two
sets is measured, and an aggregate value is reported as the final re-

sult. The evaluation of Kron-Smooth follows the same procedures.
We report the error of five graph queries including median relative
error of fe, f�, f2�, f3� and average Euclidian error of the sorted
degree sequence (as in [15]).

Table 3 shows the empirical results with two datasets (Enron
and GrQc) and two privacy budgets (ε = 0.2 and 1.6). Kron-
Ladder outperforms Kron-Smooth by considerable margins in all
settings, which implies that Kron-Ladder generates more accurate
Kronecker models. It is interesting to observe that the synthetic
graphs of Kron-Ladder perform better in answering fe (recall that
both methods use Laplace mechanism for fe). Note that the param-
eter estimation algorithm [13, 26] is designed to find a Kronecker
model that fits all counts well. Hence the noise in any count could
affect the choice of Kronecker model, then introduce bias to other
properties of the synthetic graphs. This explains how the large scale
of noise in f�, f2� and f3� propagates to fe in Kron-Smooth.

7. RELATED WORK
The question of being able to release information on graphs in a

privacy-preserving way has been of interest for a number of years,
driven by recent efforts around privacy-preserving data publishing.
It is interesting to note that within the computer science community,
the recent slew of interest in graph anonymization began with pub-
lications that emphasized the difficulty of this problem. Backstrom
et al. [2] showed that an adversary could easily learn neighborhood
information of targeted nodes from a “deidentified” (unlabeled) re-
leased graph, if they could insert a small number of edges. Hay
et al. [16] showed that the neighborhood around a node in an unla-
beled graph is often sufficiently distinctive to identify it. Narayanan
and Shmatikov [27, 28] “weaponized” these observations into ef-
fective attacks able to extract sensitive link information from dei-
dentified and lightly perturbed graphs—most famously, by linking
individuals from the Netflix prize data set to public IMDB profiles.



Table 3: Accuracy of Kronecker models tuned from noisy counts

datasets methods
ε = 0.2 ε = 1.6
fe f� f2� f3� deg. seq. fe f� f2� f3� deg. seq.

Enron Kron_Ladder 0.306% 0.595% 0.511% 0.691% 0.4628 0.043% 0.083% 0.071% 0.096% 0.4388
Kron_Smooth 1.347% 2.791% 2.394% 3.247% 1.2383 0.171% 0.331% 0.285% 0.385% 0.6027

GrQc Kron_Ladder 2.195% 9.849% 4.490% 14.52% 0.9048 0.187% 0.728% 0.298% 1.061% 0.3993
Kron_Smooth 5.908% 24.32% 11.56% 31.70% 1.5223 0.854% 3.088% 1.620% 4.469% 0.5744

The response of the research community to these demonstrations
of the weakness of deidentification was the design of numerous
methods which aimed to be more robust to attack. Drawing in-
spiration from concurrent efforts on k-anonymity for tabular data,
several approaches aimed to modify the input graph structure to
produce an output graph that was not susceptible to the techniques
used to defeat deidentification. Of particular note was the work of
Liu and Terzi [23] which aimed to make graphs k-degree anony-
mous, so that an adversary possessed of the knowledge of the de-
gree of a target node would find at least k nodes in the released
graph sharing that degree. Many subsequent works built on this
foundation by proposing stronger structural requirements on the re-
leased graph. Zhou and Pei [37] considered graphs with nodes of
certain types, and sought to ensure that for every set of neighbor-
hood links around a target node, there are multiple possible matches
in the released graph. Zou et al. [38] proposed k-automorphism, re-
quiring that every node in the released graph has at least k−1 struc-
turally indistinguishable counterparts (i.e. have the same pattern of
links between neighbors, and neighbors-of-neighbors, etc.). A par-
allel set of works were based on “clustering” within graphs, where
groups of nodes are replaced by a “cluster” in the output graph, and
only aggregate statistics of the cluster are revealed [6, 16, 34].

A survey of the state of the art in 2008 provides a snapshot of
several dozen contributions in this area; in the intervening years
that have been many more efforts in this direction. Nevertheless,
a number of criticisms of this philosophy towards data anonymiza-
tion have emerged. Principal amongst these is that methods which
seek to prevent a specific attack by an adversary with a certain type
of information and an assumed approach to reasoning are not ro-
bust against “real-world” adversaries, who can bring unanticipated
knowledge and inference techniques to circumvent these. Secon-
darily, there is the perception that these methods provide only ad
hoc rather than principled guarantees, and do not adequately pre-
serve utility for their inputs. Instead, there has been growing in-
terest in ways to provide a more formal guarantee of privacy. The
main such model is Differential Privacy, which is not without its
critics or identified limitations, but which nevertheless represents
the current focus of efforts to provide workable privacy solutions.

Differential privacy [7] is rigorously formulated based on statis-
tics and offers an extremely strong privacy protection. A plethora
of efforts has been made to apply differential privacy to a broad
range of problems. It is beyond the scope of this paper to give
full coverage of all differential privacy methods; instead, see recent
surveys [8,9,12,30] and references therein. A brief survey of differ-
entially private algorithms for releasing subgraph counts is given in
Section 1.2. In what follows, we review some other related efforts
to realize privacy protection for graph data.

Hay et al. [15] translated the language of differential privacy
to the graph context, and give the formal definitions of edge and
node differential privacy. This paper and subsequent related ap-
proaches [18,22] provide effective solutions to releasing the degree
sequence of a sensitive graph, and use some sophisticated post-
processing techniques to reduce noise. Proserpio et al. [31] and
Sala et al. [33] further extend the problem to higher-order joint

degree sequences, which model more detailed information within
the sensitive graph. A later work by Wang and Wu [35] improves
Sala’s solution by calibrating noise based on smooth sensitivity,
rather than the large global sensitivity. Moreover, the authors il-
lustrate that synthetic graphs generated from the noisy joint degree
sequence have a series of appealing properties. In addition, Mir
and Wright [26] show how to bridge differentially private subgraph
counts with Kronecker graph models, providing another method
to generate synthetic graphs with privacy guarantees. In a differ-
ent vein, [1, 14, 36] investigate differentially private spectral analy-
sis (e.g., singular value decomposition and random projection) for
graph data. Their results imply a great potential to process/release
large scale sensitive graphs like the Facebook friendship graph and
call/SMS/email networks. Recently, Lu and Miklau [24] describe
the use of a chain mechanism to release alternating k-star and k-
triangle counting with an (ε,δ )-differentially private guarantee.
They also show how the published counts can be used to estimate
the parameters of exponential random graph models.

The above discussion principally focuses on methods that pro-
vide edge differential privacy, where two graphs are considered
neighbors if they differ only in the presence of a single edge. There
is also a branch of work studying other variants of graph differ-
ential privacy. For example, [3, 5, 19] are the first few methods to
provide node differential privacy with non-trivial utility guarantees.
Node differential privacy is a qualitatively stronger privacy guaran-
tee than edge differential privacy, where two graphs are considered
neighbors if they differ in the presence of a node and all its in-
cident edges. As a consequence, it generally requires substantially
more noise to protect the released information. Meanwhile, Rastogi
et al. [32] consider a relaxed version of edge differential privacy,
called edge adversarial privacy, which relies on some assumptions
about prior knowledge of the malicious user. As those assumptions
might plausibly be violated in practice, this new definition actually
provide less privacy assurance, compared to the conventional edge
differential privacy.

8. CONCLUDING REMARKS
The problem of releasing information about private data is a

timely one, and there continues to be pressures to make relevant
information available in a privacy-respecting fashion. We have
shown that the widely-respected differential privacy guarantee can
be obtained for graph statistics, specifically subgraph counts, in a
way that is efficient and accurate. Future work includes extending
the solution to a large scale graph like Facebook. Moreover, the
ladder method developed, although tailored for subgraph counts,
can be applied more generally, to functions outside the domain of
graphs. The main challenge in lifting the notion to other domains
is to ensure that concepts such as local sensitivity at distance t are
well-defined. It will be natural to study the usefulness of the ladder
framework for other structured mathematical objects, such as ma-
trix representations of data, as well as special cases of graphs, such
as trees or directed acyclic graphs.
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APPENDIX
A. NP-COMPLETENESS

THEOREM A.1. Computing LS(g, t) of fkC for a constant k > 3
is NP-complete.

PROOF. We first prove that it is NP-complete to compute
LSi j(g, t) given a particular pair of nodes (i, j), to which the well-
known Clique Problem is polynomial-time reducible.

Given an instance of Clique Problem 〈g, t〉 (i.e., whether a given
graph g has a clique of at least size t), we extend g to g+ by adding
two extra nodes i and j. Then we make i connected to all other
nodes in g+ while keeping j isolated (except i). This construction
can be done in time that is polynomial in the size of Clique Prob-
lem instance. Next, we prove that

LSi j(g+, t) =
(

t
k−2

)
⇔ g contains a t-clique,

where k can be set to any constant integer within (3, t).
Recall from Lemma 5.3 that local sensitivity of fkC over (i, j)

is the number of (k− 2)-cliques in the subgraph induced by their
common neighbors Ai j . In g+, Ai j is empty since j is isolated from
g. After t modification steps on the graph, the size of Ai j could
reach t if we connect j to t nodes in g (i is already connected to
all nodes in g); and the maximum number of (k− 2)-cliques, i.e.,( t

k−2

)
, is achieved if and only if new neighbors of i and j form a

t-clique. Therefore, it implies the existence of a t-clique in g.
We remark that this proof does not apply in the case of k = 3 (tri-

angle counting), since the t-clique is not the only subgraph of size
t that maximizes the number of 1-cliques (nodes). Indeed, comput-
ing LSi j(g, t) of triangle counting is polynomial-time solvable as
shown by Lemma 5.1.

Last, we extend the result to LS(g, t) through a reduction from
the same NP-complete problem, Clique Problem. For any instance
〈g, t〉 where g has n nodes, we construct g+ from g by adding a n-
clique and a hub node i which is connected to all other nodes in g+.
Then we show that

LS(g+, t) =
(

n−1

k−2

)
+

(
t

k−2

)
⇔ g contains a t-clique.

Let j be an arbitrary node in the n-clique. It is easy to prove that
LS(g+, t) = LSi j(g+, t). Therefore, LS(g+, t) equals the number of
(k−2)-cliques in the subgraph of Ai j . At the beginning, subgraph
of Ai j is a (n−1)-clique. To extend it, one can use one modification
to either (i) add a node of g to Ai j by connecting it to j, or (ii) add
an edge into the subgraph of Ai j. The optimum is only attained
by adding t nodes of g to Ai j , who form a t-clique in g. Thus, the
new subgraph of Ai j contains two separated components: a (n−1)-

clique and a t-clique, and it has
(n−1

k−2

)
+
( t

k−2

)
different (k − 2)-

cliques.

B. PROOF OF THEOREM 3.1
In what follows, we rewrite the proof of Theorem 6 of [25] using

the concepts and notations developed in this paper.

PROOF. The first step is to observe that Algorithm 1 draws from
a probability distribution over the integers where the probability
associated with output k is proportional to exp

(
εq(g,k)/2Δq

)
, nor-

malized by the sum of this quantity over all integers. Note that
we do not compute this probability directly; instead, for the sake
of efficiency, we group together all integers which share the same
probability (in our terminology, which are on the same rung) for
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Figure 8: An end-to-end example

the rungs 0 to M. Additionally, we compute the aggregate proba-
bility for all outputs on rungs below M as a single value captured
by M + 1, as described after the description of the algorithm. It is
straightforward to check that the actions of Algorithm 1 in the cre-
ation of the weight array give these sums of (unnormalized) proba-
bilities. The action of the algorithm can then be seen as following
two steps: first, we select a rung of the ladder (where rung M+1 is
considered as a special case) according to the relative value of the
weight of the rung. Then, we pick an integer from the correspond-
ing rung. For rungs 0 to M, this is simple: all integers on the rung
have the same probability, so we just pick one uniformly. For rung
M+1, which corresponds to an unbounded tail of possible outputs,
we take advantage of the structure to first pick how many further
rungs down the ladder to go, and then to again pick uniformly from
these. This gives the desired probability distribution of producing
each possible value.

Hence as argued above, the output probability distribution of Al-
gorithm 1 at integer k is equal to

Pr[k] =
exp

(
ε

2Δq
·q(g,k)

)
∑k∈Z exp

(
ε

2Δq
·q(g,k)

) . (7)

Now if the input g is replaced by its neighboring graph g′, the qual-
ity of k will be changed by at most Δq, i.e., |q(g,k)−q(g′,k)| ≤ Δq.
Therefore, the numerator of (7) can change at most by a factor of
exp(εΔq/2Δq)= exp(ε/2) and the denominator minimum by a fac-
tor of exp(−ε/2). Thus the ratio of the new probability of k (with
g′) and the original one is at most exp(ε).

C. AN END-TO-END EXAMPLE
In this section, we review the end-to-end workflow of our algo-

rithm with an example input in Figure 8(a). The query in use is
the triangle counting f�. Our algorithm consists of the following
steps:

1. Compute the number of triangles f�(g) = 4, i.e., �abd , �abe,
�bcd and �ae f .

2. Generate the ladder function of query f�, input g and step t,
i.e., It(g), for each t ∈ [0,M]. We describe the definition and key
properties of ladder functions in Section 4, then illustrate how to
compute ladder functions for specific queries in Section 5. For tri-
angle counting query, we use its local sensitivity at distance t as the
ladder function. I0(g) = LS(g,0) = 2 achieved by removing edge



(a,b) from the graph. LS(g,1) allows one extra change before cal-
culating LS. In Figure 8(b), we show how the dashed edge (a,c)
affects LSab, making LS(g,1) = LSab(g,1) = 3. Then Figure 8(c)
shows an example achieving LS(g,2) = 4, where the value con-
verges to the global sensitivity. Therefore, this step terminates with
M = 2.

3. Build the ladder quality function q(g,k) for k ∈ Z, by combining
the true answer f�(g) and ladder functions It(g); see Definition 3.1
of Section 3.1. Figure 8(d) gives a part of the quality function q
over the integer domain. The true answer k = 4 takes the maximum
value 0, which is the center of the function. Next to it are two
first rungs, each consisting of I0(g) = 2 integers on one side of the
center. All integers on first rungs are assigned quality score −1.
The next rung is formed of the next I1(g) = 3 integers on each side

with quality −2 and so on. Note that every integer will be given a
quality score.

4. Generate the output distribution from the exponential mecha-
nism that takes q(g,k) as quality function; see equation (3) of Sec-
tion 2.1. As the distribution changes with the privacy budget ε , we
fix ε to 2 in the following discussion. Now the sampling proba-
bility for k = 4 is proportional to exp

(
εq(g,4)/2Δq

)
= e0, given

Δq = 1 (see Theorem 4.2) and q(g,4) = 0. Similarly, the probabil-

ity for k = 5 is proportional to e−1. After normalization, we have
Pr[k = 4] = 25.6% and Pr[k = 5] = 9.4%, as shown in Figure 8(e).

5. Sample the distribution and return. Algorithm 1 and Section 3.2
are dedicated to detailing the efficient sampling technique.


