Private Release of Graph Statistics using Ladder Functions

Jun Zhang¹ Graham Cormode² Cecilia Procopiuc³ Divesh Srivastava⁴ Xiaokui Xiao¹

1.Nanyang Technological University {jzhang027, xkxiao}@ntu.edu.sg 2. University of Warwick 3. Google Inc. g.cormode@warwick.ac.uk mpro@google.com 4. AT&T Labs -- Research divesh@research.att.com

1. Private Release of Graph Statistics

D Private Data Release

3. Ladder Functions

□ Key Idea: Change Slope Gradually

 $\int \ln(\Pr[O])$

 $\ln(\Pr[O])$

Red slope 1 is $\varepsilon/I_1(g')$

Blue slope 0 is $\varepsilon/LS(g) \rightarrow \varepsilon/I_0(g)$

 $f(g) \quad f(g')$

Differential Privacy on Graph

Differentially private algorithm injects noise into the query answer, in order to cover the maximum impact of a relationship (an edge).

query1: are nodes *a* and *b* connected?

query2: how many edges?

query3: how many triangles?

2. Global and Local Sensitivity

□ Formal Definition of Differential Privacy

$\square Summary$ $\int_{\ln(\Pr[O])} f(g)$ GS GS Iadder functions

Blue slope 1 is no larger than any $\varepsilon/I_0(g')$; so it is $\varepsilon/\max I_0(g') = \varepsilon/I_1(g)$

Red slope 0 is $\varepsilon/LS(g') \rightarrow \varepsilon/I_0(g')$