An lterative Algorithm for Graph De-anonymization
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1. Problem Statement

WhICh one Is A?

publish

remove label

anonymize

2. Anonymization Techniques

() Liu and Terzi's approach: k-degree anonymization.
Adding edges to original graph in order to ensure
that any node Iin anonymized graph G* has the
same degree with at least k — 1 other nodes in G~.

(1) Bonchi et al.’s approach: random perturbation and
sparsification. Removing and/or adding edges to
original graph randomly to resist structural re-
identification.

(i) Tassa and Cohen’s approach: sequential clustering.
Grouping nodes in original graph into clusters,
each contains at least k£ nodes. Next publishing
only aggregated information to prevent privacy
breach.

3. Solution

Overview: Our algorithm runs In an iterative manner.
In particular, it maintains a n Xn correspondence
matrix M, where the entry ¢;; at the i-th row and j-th

column of M quantifies the similarity between i-th node
v; In original graph G and j-th node v; in anonymized
graph G*. Initially, all entries are set to 1. After that, the

algorithm iteratively refines M to adjust the value of
each entry until a stop criterion is met.

Node Similarity: Within a certain iteration of our
algorithm, we evaluate the similarity between any node
v; In G and any node v; in G* by inspecting the entry
e;j, as well as the neighbors of v;, denoted by N(v;),
and the neighbors of v;, denoted by N(v;). In

particular, we try to figure out the similarity of
neighborhoods by matching the nodes in N(v;) to
those in N(v;). More formally, we update e;; with the

following equation:

ei; + stm (N (v;), N(’U;))
1 + max(|N(v)], [N (v¥)])
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Figure 1: An example of sim function

v and N(v;) in G”

sim(N(v;), N(v}"))

Computation of sim(N(v;), N(v;)) :To compute sim
function, we first construct a complete bipartite graph B
consisting of the nodes in N(v;) and N(v;). For any

edge in B connecting v, in N(v;) and vg in N(v;), we
set the weight of the edge to the value of the entry e,
representing the similarity between v, and vg. After

that, we compute a maximum matching in B using the
classic Hungarian algorithm, and we  set
sim(N(v;), N(v;)) to the total weight of the edges in

the maximum matching. Intuitively, the larger
sim(N(v;), N(v;)) is, the more likely that nodes in
N(v;) can be matched to the nodes in N(v;).

4. Experiment

Dataset: a social network G representing coauthorship
of data mining community, with 8,248 nodes and
18,732 edges.
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Figure 3: Accuracy against
Bonchi et al's sparsification

Figure 2: Accuracy against
Liu and Terzi's approach
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Figure 5: Accuracy against
Tassa and Cohen’s approach

Figure 4: Accuracy against
Bonchi et al’'s perturbation


mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg
mailto:jzhang027@ntu.edu.sg

