
An Iterative Algorithm for Graph De-anonymization 

Figure 1: An example of 𝑠𝑖𝑚 function 

4. Experiment 

Dataset: a social network 𝐺 representing coauthorship 

of data mining community, with 8,248 nodes and 

18,732 edges. 
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1. Problem Statement 

remove label 

anonymize 

publish 

re-identify 

2. Anonymization Techniques 

(i) Liu and Terzi’s approach: k-degree anonymization. 

Adding edges to original graph in order to ensure 

that any node in anonymized graph 𝐺∗ has the 

same degree with at least 𝑘 − 1 other nodes in 𝐺∗. 

(ii) Bonchi et al.’s approach: random perturbation and 

sparsification. Removing and/or adding edges to 

original graph randomly to resist structural re-

identification. 

(iii) Tassa and Cohen’s approach: sequential clustering. 

Grouping nodes in original graph into clusters, 

each contains at least 𝑘 nodes. Next publishing 

only aggregated information to prevent privacy 

breach. 

3. Solution 

Overview: Our algorithm runs in an iterative manner. 

In particular, it maintains a 𝑛 × 𝑛  correspondence 

matrix 𝑀, where the entry 𝑒𝑖𝑗 at the 𝑖-th row and 𝑗-th 

column of 𝑀 quantifies the similarity between 𝑖-th node 

𝑣𝑖 in original graph 𝐺 and 𝑗-th node 𝑣𝑗
∗ in anonymized 

graph 𝐺∗. Initially, all entries are set to 1. After that, the 

algorithm iteratively refines M to adjust the value of 

each entry until a stop criterion is met.  

 

Node Similarity: Within a certain iteration of our 

algorithm, we evaluate the similarity between any node 

𝑣𝑖 in 𝐺 and any node 𝑣𝑗
∗ in 𝐺∗ by inspecting the entry 

𝑒𝑖𝑗, as well as the neighbors of 𝑣𝑖, denoted by 𝑁 𝑣𝑖 , 

and the neighbors of 𝑣𝑗
∗ , denoted by  𝑁(𝑣𝑗

∗).  In 

particular, we try to figure out the similarity of 

neighborhoods by matching the nodes in 𝑁 𝑣𝑖  to 

those in 𝑁(𝑣𝑗
∗). More formally, we update 𝑒𝑖𝑗 with the 

following equation: 

 

a maximum matching 

which one is A? 

Computation of                                 :To compute sim 

function, we first construct a complete bipartite graph 𝐵 

consisting of the nodes in 𝑁 𝑣𝑖  and 𝑁(𝑣𝑗
∗). For any 

edge in 𝐵 connecting 𝑣𝛼 in 𝑁 𝑣𝑖  and 𝑣𝛽
∗  in 𝑁(𝑣𝑗

∗), we 

set the weight of the edge to the value of the entry 𝑒𝛼𝛽 

representing the similarity between 𝑣𝛼 and 𝑣𝛽
∗ . After 

that, we compute a maximum matching in 𝐵 using the 

classic Hungarian algorithm, and we set 

𝑠𝑖𝑚(𝑁 𝑣𝑖 , 𝑁(𝑣𝑗
∗)) to the total weight of the edges in 

the maximum matching. Intuitively, the larger 

𝑠𝑖𝑚(𝑁 𝑣𝑖 , 𝑁(𝑣𝑗
∗))  is, the more likely that nodes in 

𝑁 𝑣𝑖  can be matched to the nodes in 𝑁(𝑣𝑗
∗). 

 

Figure 2: Accuracy against 

Liu and Terzi’s approach 

Figure 3: Accuracy against 

Bonchi et al’s sparsification 

Figure 4: Accuracy against 

Bonchi et al’s perturbation 

Figure 5: Accuracy against 

Tassa and Cohen’s approach 
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