An Iterative Algorithm for Graph De-anonymization

Jun Zhang¹

Youze Tang¹

Xiaokui Xiao¹ Yin Yang²

Zhenjie Zhang²

Marianne Winslett^{2,3}

1.Nanyang Technological University Singapore {jzhang027, s110013, xkxiao}@ntu.edu.sg

2. Advanced Digital Sciences Center Singapore {yin.yang, zhenjie}@adsc.com.sg

3. University of Illinois USA winslett@illinois.edu

a maximum matching

М	v_1^*	v_2^*	v_3^*	v_4^*
v_1	0.1	0.9	0	0

2. Anonymization Techniques

Liu and Terzi's approach: *k-degree anonymization*. (i) Adding edges to original graph in order to ensure that any node in anonymized graph G^* has the same degree with at least k - 1 other nodes in G^* .

Figure 1: An example of *sim* function

Computation of $sim(N(v_i), N(v_i^*))$:To compute sim function, we first construct a complete bipartite graph B consisting of the nodes in $N(v_i)$ and $N(v_i^*)$. For any edge in B connecting v_{α} in $N(v_i)$ and v_{β}^* in $N(v_i^*)$, we set the weight of the edge to the value of the entry $e_{\alpha\beta}$ representing the similarity between v_{α} and v_{β}^* . After that, we compute a maximum matching in B using the Hungarian algorithm, classic and we set $sim(N(v_i), N(v_i^*))$ to the total weight of the edges in matching. Intuitively, the maximum the larger

- Bonchi et al.'s approach: random perturbation and (ii) sparsification. Removing and/or adding edges to original graph randomly to resist structural reidentification.
- (iii) Tassa and Cohen's approach: sequential clustering. Grouping nodes in original graph into clusters, each contains at least k nodes. Next publishing only aggregated information to prevent privacy breach.

3. Solution

Overview: Our algorithm runs in an iterative manner. In particular, it maintains a $n \times n$ correspondence *matrix* M, where the entry e_{ij} at the *i*-th row and *j*-th column of *M* quantifies the similarity between *i*-th node v_i in original graph G and j-th node v_i^* in anonymized graph G^{*}. Initially, all entries are set to 1. After that, the algorithm iteratively refines M to adjust the value of each entry until a stop criterion is met.

 $sim(N(v_i), N(v_i^*))$ is, the more likely that nodes in $N(v_i)$ can be matched to the nodes in $N(v_i^*)$.

4. Experiment

Dataset: a social network G representing coauthorship of data mining community, with 8,248 nodes and 18,732 edges.

Node Similarity: Within a certain iteration of our algorithm, we evaluate the similarity between any node v_i in G and any node v_i^* in G^* by inspecting the entry e_{ij} , as well as the neighbors of v_i , denoted by $N(v_i)$, and the neighbors of v_i^* , denoted by $N(v_i^*)$. In particular, we try to figure out the similarity of neighborhoods by matching the nodes in $N(v_i)$ to those in $N(v_i^*)$. More formally, we update e_{ii} with the following equation:

$$e_{ij} = \frac{e_{ij} + sim(N(v_i), N(v_j^*))}{1 + \max(|N(v_i)|, |N(v_j^*)|)}$$

Figure 2: Accuracy against Liu and Terzi's approach

Figure 3: Accuracy against Bonchi et al's sparsification

Figure 4: Accuracy against Bonchi et al's perturbation

Figure 5: Accuracy against Tassa and Cohen's approach